Carroll & Ostlie: Introduction to Modern Astrophysics

Xing’s notes. Bullet-point summaries of the Big Orange Book, including most of the significant formulas. Unfortunately, I don’t plan on notetaking part III in the foreseeable future.

Table of Contents

I. The Tools of Astronomy

1. The Celestial Sphere

Altitude–Azimuth Coordinate System

Equatorial Coordinate System

Precession

Time standards

Motions

Spherical Trigonometry

2. Celestial Mechanics

Ellipses

Kepler’s Laws

  1. Ellpitical orbits: $r = {L^2/\mu^2 \over GM(1 + e \cos \theta)}$
  2. Equal area over equal time: ${dA \over dt} = {L \over 2\mu}$ (constant)
  3. Period–axis relation: $P^2 = ka^3$, $k = {4\pi^2 \over G(M+m)} = 1 \text{ year}^2\text{ AU}^{-3}$

Orbital equations

3. The Continuous Spectrum of Light

Parallax and parsecs (pc)

Apparent magnitude

Absolute magnitude

Light

Blackbody radiation

Color index

  name center bandwidth
U UV 365 nm 68 nm
B blue 440 nm 98 nm
V visual 550 nm 89 nm

4. Special Relativity

Einstein’s postulates:

  1. Principle of relativity: Laws of physics are the same in all inertial reference frames
  2. Constancy of the speed of light: In vacuum, $c$ is independent of the motion of the light source

Lorentz transformations:

Relativistic doppler shifts

Relativistic momentum and energy

5. Interaction of Light and Matter

Kirchoff’s Laws

  1. Hot, dense gas/solid produces continuous, lineless spectrum
  2. Hot, diffuse gas produces emission lines
  3. Cold, diffuse gas in front of a continuous spectrum source produces absorption lines in the spectrum

Spectrographs

Photoelectric effect

Compton scattering

Bohr’s semiclassical atom

De Broglie waves

Heisenberg’s Uncertainty Principle

Schrödinger's quantum atom

Normal Zeeman effect

Anomalous Zeeman effect and Spin

Fermions and bosons

Complex spectra

6. Telescopes

Basic optics

Resolution

Brightness

Optical telescopes

Radio telescopes

IR/UV/X-ray/gamma-ray astronomy

II. The Nature of Stars

7. Binary Systems and Stellar Parameters

Classifications

Mass determination of visual binaries

Mass determination of spectroscopic binarie

Temperature ratio and radii determination of eclipsing binaries

Computer modeling

Extrasolar planets (exoplanets)

8. Classification of Stellar Spectra

Harvard spectral types

Spectral physics

Hertzsprung–Russell diagram

Morgan−Keenan luminosity classes

9. Stellar Atmospheres

Radiation field

Temperature

Opacity

Radiative transfer

Spectral line profile

Computer modeling

10. The Interiors of Stars

Hydrostatic equilibrium

Kelvin–Helmholtz mechanism

Nuclear fusion

Nucleosynthesis

Energy transport and thermodynamics

Stellar model building

Main sequence

11. The Sun

Solar interior

Photosphere

Chromosphere

Transition region

Corona

Solar wind

Magnetohydrodynamics (MHD)

Sunspots

Plages

Flares

Prominences

Coronal mass ejections (CMEs)

Magnetic activity in other stars

12. The Interstellar Medium and Star Formation

Interstellar medium (ISM)

Dust

Hydrogen

Interstellar cloud structure

thing $T$ (K) $M\;(M_\odot)$ $A_V$ $n$ (m$^{-3}$ $D$ (pc)
diffuse molecular cloud $15\sim50$ $3\sim100$ $1\sim5$ $5 \times 10^8 \sim 5 \times 10^9$ $1\sim10$
giant molecular cloud $\sim15$ $10^5\sim10^6$ $\gtrsim1$ $1 \times 10^8 \sim 3 \times 10^8$ $\sim50$
· dark cloud complex $\sim10$ $\sim10^4$ $\sim5$ $\sim5 \times 10^8$ $\sim10$
· clump $\sim10$ $\sim30$ $\sim10$ $\sim 1 \times 10^9$ $1\sim5$
· dense core $\sim10$ $\sim10$ $\gtrsim10$ $\sim 1 \times 10^{10}$ $\sim0.1$
· hot core $100\sim300$ $10\sim1000$ $50\sim1000$ $1 \times 10^{13} \sim 1 \times 10^{15}$ $0.05\sim0.1$
Bok globule $10\sim$ $1\sim1000$ $\sim10$ $\gtrsim 1 \times 10^{10}$ $\lesssim1$

Interstellar cloud heating and cooling

Protostar formation

Protostar evolution

Protostar observation

Pre-main-sequence evolution

Stellar formation effects on medium

Modifications to classical model

13. Main Sequence and Post-Main-Sequence Stellar Evolution

Main sequence (MS)

Subgiant branch (SGB)

Red giant branch (RGB)

Red giant tip / start of helium fusion

Horizontal branch (HB) / blue loop

Early asymptotic giant branch (E-AGB)

Thermally-pulsating AGB (TP-AGB)

Late and post-AGB

Stellar populations

Stellar clusters

14. Stellar Pulsation

Observations

Radial pulsation mechanisms

Pulsation model

Nonradial pulsation mechanisms

Helioseismology and asteroseismology

15. The Fate of Massive Stars

Post-main-sequence evolution

$M\;(M_\odot)$ path to supernova
$\gtrsim85$ O → Of → LBV → WN → WC → SN
$40\sim85$ O → Of → WN → WC → SN
$25\sim40$ O → RSG → WN → WC → SN
$20\sim25$ o → RSG → WN → SN
$10\sim20$ O → RSG → BSG → SN

Supernova observation and classification

Core-collapse supernovae

core-burning fuel duration for $20 M_\odot$ star
H $\sim10^7$ years
He $\sim10^6$ years
C $\sim300$ years
O $\sim200$ days
Si $\sim2$ days

Supernova nucleosynthesis

Gamma-ray bursts (GRB)

Long–soft GRBs

Cosmic rays

16. The Degenerate Remnants of Stars

White dwarfs (WD)

Degenerate matter

Neutron stars (NS)

Pulsars

Magnetars

17. General Relativity and Black Holes

General relativity

Intervals and geodesics

Black holes (BH)

18. Closed Binary Star Systems

Gravitation

Accretion disks

Classification

Cataclysmic variable evolution

Cataclysmic variables

Classical nova cycle

Type Ia supernovae

Neutron star binary formation processes

X-ray binaries

X-ray binary remnants

III. The Solar System

IV. Galaxies and the Universe

24. The Milky Way Galaxy

Observation

Morphology

25. The Nature of Galaxies

by